Byju's Answer
Standard X
Mathematics
Trigonometric Identities
Prove that√1+...
Question
Prove that
√
1
+
s
i
n
θ
1
−
s
i
n
θ
+
√
1
−
s
i
n
θ
1
+
s
i
n
θ
=
2
s
e
c
θ
[2 MARKS]
Open in App
Solution
Concept: 1 Mark
Applicaiton: 2 Mark
We have
=
√
1
+
s
i
n
θ
√
1
−
s
i
n
θ
+
√
1
−
s
i
n
θ
√
1
+
s
i
n
θ
=
1
+
s
i
n
θ
+
1
−
s
i
n
θ
√
(
1
−
s
i
n
θ
)
(
1
+
s
i
n
θ
)
=
2
√
(
1
−
s
i
n
2
θ
)
=
2
√
c
o
s
2
θ
=
2
c
o
s
θ
=
2
s
e
c
θ
∴
LHS = RHS
Suggest Corrections
0
Similar questions
Q.
Prove that
s
e
c
θ
+
t
a
n
θ
−
1
t
a
n
θ
−
s
e
c
θ
+
1
=
c
o
s
θ
(
1
−
s
i
n
θ
)
[4 MARKS]
Q.
Prove that
√
1
−
sin
θ
1
+
sin
θ
=
sec
θ
−
tan
θ
, (where
θ
is acute).
Q.
Prove that :
c
o
t
3
θ
1
+
c
o
t
2
θ
+
t
a
n
3
θ
1
+
t
a
n
2
θ
= sec
θ
. cosec
θ
- 2 sin
θ
cos
θ
.
Q.
Question 5
If
s
i
n
θ
+
2
c
o
s
θ
=
1
, then prove that
2
s
i
n
θ
−
c
o
s
θ
=
2
.
Q.
Prove that -
1 +
s
i
n
2
θ
+
s
i
n
2
ϕ
> sin
θ
+ sin
ϕ
+ sin
θ
sin
ϕ
.
View More
Related Videos
Trigonometric Identities
MATHEMATICS
Watch in App
Explore more
Trigonometric Identities
Standard X Mathematics
Solve
Textbooks
Question Papers
Install app