CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

Prove that the ratio of the area of two similar triangles is equal to the ratio of squares on the corresponding sides.


Solution

$$Given:\triangle ABC\sim\triangle PQR$$

To prove :$$ \dfrac{ar\left(ABC\right)}{ar\left(PQR\right)}={\left(\dfrac{AB}{PQ}\right)}^{2}={\left(\dfrac{BC}{QR}\right)}^{2}={\left(\dfrac{AC}{PR}\right)}^{2}$$

Proof:-
$$arABC=\dfrac { 1 }{ 2 } \times base\times height=\dfrac { 1 }{ 2 } \times BC\times AM---(i)$$

$$ar\left( PQR \right) =\dfrac { 1 }{ 2 } \times base\times hight=\dfrac { 1 }{ 2 } \times QP\times PN----(ii)$$

$$\dfrac{ar\left(ABC\right)}{ar\left(PQR\right)}=\dfrac {BC \times AM}{QR\times PN}----(A)$$

In $$\triangle ABM$$ and $$\triangle PQN,  <B=<Q,  <M=<N$$

$$\triangle ABM\sim \triangle PQN$$

$$\therefore \dfrac{AB}{PQ}=\dfrac{AM}{PN}---(B)$$

From $$\left(A\right)$$

$$\dfrac{ar\left(ABC\right)}{ar\left(PQR\right)}= \dfrac{BC\times AM}{QR\times PN}= \dfrac{BC}{QR}\times \dfrac{AB}{PQ}---(C)$$

Now, given $$\triangle ABC \sim \triangle PQR \Rightarrow \dfrac{AB}{PQ}=\dfrac{BC}{QP}= \dfrac{AC}{PR}$$

Putting in $$\left(C\right) \quad \dfrac{ar\left(ABC\right)}{ar\left(PQR\right)}= {\left(\dfrac{AB}{PQ}\right)}^{2}$$

Similarly
$$\Rightarrow\dfrac{ar\left(ABC\right)}{ar\left(PQR\right)}= {\left(\dfrac{AB}{PQ}\right)}^{2}{\left(\dfrac{BC}{QR}\right)}^{2}={\left(\dfrac{AC}{PR}\right)}^{2}$$
Hence proved


1378457_1146691_ans_783dcd07848a422a9d8b0da03f7f2b0e.png

Mathematics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image