L.H.S. = 1−cosθ1+cosθ
⇒ L.H.S. = 1−cosθ1+cosθ×1−cosθ1−cosθ
⇒ L.H.S. = (1−cosθ)21−cos2θ=(1−cosθ)2sin2θ
⇒ L.H.S. = (1−cosθsinθ)2=(1sinθ−cosθsinθ)2=(cosecθ−cotθ)2=R.H.S.
Prove that: (cosecθ−cotθ)2=1−cosθ1+cosθ
Prove the following trignometric identities:
√1−cos θ1+cos θ=cosec θ−cot θ