Equation of any conic in polar form is
lr=1−ecosθ⇒1r=1−ecosθl.....(i)
If the vectorical angle of focal chord PSP′ is α then vectorical angle of perpendicular focal chord QSQ′ is (α+π2)
Now if vectorical angle of P is α then P′ is (π+α)
⇒1SP=1−ecosαl and 1SP′=1−ecos(π+α)l
⇒1SP.SP′=1−ecosαl×1−ecos(π+α)l⇒1SP.SP′=1−ecosαl×1+ecosαl⇒1SP.SP′=1−e2cos2αl2.....(ii)
Also the vectorical angle of Q is (α+π2) then Q′ will be (α+π2+π)
⇒1SQ=1−ecos(α+π2)l and 1SQ′=1−ecos(α+π2+π)l
⇒1SQ.SQ′=1+esinαl×1−esinαl⇒1SQ.SQ′=1−e2sin2αl2.....(iii)
Adding (ii) and (iii)
⇒1SP.SP′+1SQ.SQ′=1−e2cos2αl2+1−e2sin2αl2⇒1SP.SP′+1SQ.SQ′=2−e2(cos2α+sin2α)l2⇒1SP.SP′+1SQ.SQ′=2−e2l2
R.H.S is constant
Hence proved.