The correct option is
B 1Given
x6−12x5+bx5+cx3+dx2+ex+64=0
Since α1,α2,α3,α4,α5,α6 are the roots of the equation
Let us consider the sum of the roots
α1,α1,+.......+α6=12→1
The product of roots would be
α1,α2,.......α6=64→2
If we apply arithmetic and geometric mean to equation roots
A.M>G.M
α1+α2+.......+α6≥(α1,α2.......+α6)1/6
126≥(α1,α2,.......α)1/6
26≥126≥(α1,α2,.......α6)
α1,α2,.......α6)≤64
(α1,α2,.......α6)=64
The roots product to equality if all the roots are equal
⇒(α1=α2=.......=α6)
Since the root equation is 2
(x−2)=0 defines the root of the equation.
If we divide (x−2) by (x−1) the remainder is 1.