Let α+iβ=tan−1(x+iy)
Then α−iβ=tan−1(x−iy)
Adding, we get
2α=tan−1(x+iy)+tan−1(x−iy)
⇒tan−1(x+iy+x−iy1−(x+iy)(x−iy))
∴ Real part α=12tan−1(x+iy+x−iy1−(x+iy)(x−iy))
Subtracting, 2iβ=tan−1(x+iy)−tan−1(x−iy)
⇒2iβ=tan−1((x+iy)−(x−iy)1+(x+iy)(x−iy))
⇒2iβ=tan−1(2iy1+x2+y2)
⇒2iβ=itanh−1(2y1+x2+y2)
∴ Imaginary part β=12tanh−1(2y1+x2+y2)