Question

# Show that$$\begin{vmatrix} _{ }^{ x }{ { C }_{ r } } & ^{ x }{ { C }_{ r+1 } } & _{ }^{ x }{ { C }_{ r+2 } } \\ _{ }^{ y }{ { C }_{ r } } & _{ }^{ y }{ { C }_{ r+1 } } & _{ }^{ y }{ { C }_{ r+2 } } \\ _{ }^{ z }{ { C }_{ r } } & _{ }^{ z }{ { C }_{ r+1 } } & _{ }^{ z }{ { C }_{ r+2 } } \end{vmatrix}=\begin{vmatrix} _{ }^{ x }{ { C }_{ r } } & ^{ x+1 }{ { C }_{ r+1 } } & _{ }^{ x+2 }{ { C }_{ r+2 } } \\ _{ }^{ y }{ { C }_{ r } } & _{ }^{ y+1 }{ { C }_{ r+1 } } & _{ }^{ y+2 }{ { C }_{ r+2 } } \\ _{ }^{ z }{ { C }_{ r } } & _{ }^{ z+1 }{ { C }_{ r+1 } } & _{ }^{ z+2 }{ { C }_{ r+2 } } \end{vmatrix}$$

Solution

## Hint: First observe that$$^{ x }{ C }_{ r }+^{ x }{ C }_{ r+1 }=^{ x+1 }{ C }_{ r+1 }$$and $$^{ x }{ C }_{ r+1 }+^{ x }{ C }_{ r+2 }=^{ x+1 }{ C }_{ r+2 }$$.Now applying $${C}_{3}+{C}_{2}$$ and $${C}_{2}+{C}_{1}$$, we get$$\Delta =\left| \begin{matrix} ^{ x }{ C }_{ r } & ^{ x+1 }{ C }_{ r+1 } & ^{ x+1 }{ C }_{ r+2 } \\ ^{ y }{ C }_{ r } & ^{ y+1 }{ C }_{ r+1 } & ^{ y+1 }{ C }_{ r+2 } \\ ^{ z }{ C }_{ r } & ^{ z+1 }{ C }_{ r+1 } & ^{ z+1 }{ C }_{ r+2 } \end{matrix} \right|$$Again applying $${C}_{3}+{C}_{2}$$, we get $$\Delta =\left| \begin{matrix} ^{ x }{ C }_{ r } & ^{ x+1 }{ C }_{ r+1 } & ^{ x+2 }{ C }_{ r+2 } \\ ^{ y }{ C }_{ r } & ^{ y+1 }{ C }_{ r+1 } & ^{ y+2 }{ C }_{ r+2 } \\ ^{ z }{ C }_{ r } & ^{ z+1 }{ C }_{ r+1 } & ^{ z+2 }{ C }_{ r+2 } \end{matrix} \right| \quad$$by the same rule.Mathematics

Suggest Corrections
Â
0

Similar questions
View More

People also searched for
View More