Show that the origin is equidistant from the lines 4x + 3y + 10 = 0; 5x - 12y + 26 = 0 and 7x + 24y = 50.
Reduce 4x+3y+10=0 to perpendicular form
4x+3y=−10
−4x−3y=10
Dividing each term by
√(−4)2+(−3)2=√16+9=√25=5
−45x−35y=105=2
⇒ p1=2 ...(1)
5x−12y+26=0
5x−12y=−26
Dividing each term by
√(−5)2+(12)2=√25+144=√169=13
−513x+1213y=2613=2
⇒ p2=2 ...(2)
7x+24y=50
Dividing each term by
√(7)2+(24)2=√49+576=√625=25
7x25+2425y=5025=2
⇒ p3=2 ...(3)
Hence, rom 1, 2 and 3 equation origin is equidistant from all three lines.