Solution of the differential equation cosxdy=y(sinx−y)dx,0<x<π2 is
A
ysecx=tanx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
ytanx=secx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tanx=(secx+c)y
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
secx=(tanx+c)y
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dsecx=(tanx+c)y cosxdy=y(sinx−y)dxdydx=ytanx−y2secx1y2dydx−1ytanx=−secx ....(i) Let 1y=t⇒−1y2dydx=dtdx From equations (i) −dtdx−t(tanx)=−secx⇒dtdx+(tanx)t=secx I.F.=e∫tanxdx=(e)log|secx|secx Solution: t(I.F)=∫(I.F)secxdx⇒1ysecx=tanx+c