The correct option is C x = 1, y = - 1
ax+by=a−b and bx−ay=a+b
Here, a1a2=ab and b1b2=−ba⇒a1a2≠b1b2
Therefore, a unique solution exists.
Writing the coefficients in the following array
ba−b ab−aa+b b−a
we get, xb(a+b)+a(a−b)=yb(a−b)−a(a+b)
=−1−a2−b2
⇒xb2+a2=y−b2−a2=1a2+b2
∴x=1 and y=−1