The correct option is A C−√1−tan2x
∫sinxcos2x√cos2xdx∫tanxcosx.√1−tan2x1+tan2xdx[cos2x=1−tan2x1+tan2x]⇒∫tanxcosxsecx√1−tan2xdx⇒∫tanx.sec2xLet1−tan2x=t−2tanx.sec2xdx=dtdx=dt−2tan.sec2x⇒∫tanx.sec2x√t×dt−2tan.sec2x⇒12∫dt√t⇒12∫t−12dt⇒−12t1212+c⇒2.√t+c⇒−12×2√1−tan2x+c−√1−tan2x+c.