∫π/3π/6cos2xdx=12∫π/3π/6cos2xdx=12∫π/3π/6(1+cos2x)dx=12[x+sin2x2]π/6π/3=12[(π3+12sin2π3)−(π6+12+sinπ3)]=12[(π3+12×sinπ3)−(π2+12×√32)]=12[(π3+12×√33)−(π2+√34)]=12[π3+√34−π2−√34]=12[−π6]=−π12