Byju's Answer
Standard XII
Mathematics
Derivative of Standard Functions
Solve : lim ...
Question
Solve :
lim
h
→
0
sin
(
x
+
h
)
−
sin
(
x
−
h
)
h
Open in App
Solution
lim
h
→
0
sin
(
x
+
h
)
−
sin
(
x
−
h
)
h
=
lim
h
→
0
2
cos
(
x
+
h
+
x
−
h
2
)
sin
(
x
+
h
−
x
+
h
2
)
h
using transformation angle formula
sin
C
−
sin
D
=
2
sin
(
C
−
D
2
)
cos
(
C
+
D
2
)
=
lim
h
→
0
2
cos
x
sin
h
h
=
lim
h
→
0
sin
h
h
×
2
cos
x
=
1
×
2
cos
x
since
lim
θ
→
0
sin
θ
θ
=
1
=
2
cos
x
Suggest Corrections
0
Similar questions
Q.
lim
h
→
0
s
i
n
(
x
+
h
)
−
s
i
n
x
h
Q.
Solve the following limit
lim
h
→
0
√
h
√
16
+
√
h
−
4
Q.
Solve:
lim
h
→
0
1
h
[
1
cos
(
x
+
h
)
−
1
cos
x
]
Q.
Find the value of
lim
h
→
0
[
2
−
h
]
+
lim
h
→
0
[
2
+
h
]
___
Q.
Solve :
lim
h
→
0
(
6
+
h
)
2
−
36
h
View More
Related Videos
Derivative of Standard Functions
MATHEMATICS
Watch in App
Explore more
Derivative of Standard Functions
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app