Byju's Answer
Standard XII
Mathematics
Rationalization Method to Remove Indeterminate Form
Solve x→∞li...
Question
Solve
l
i
m
x
→
∞
√
x
2
+
1
−
3
√
x
2
+
1
4
√
x
4
+
1
−
5
√
x
4
+
1
Open in App
Solution
l
i
m
x
→
∞
√
x
2
+
1
−
3
√
x
2
+
1
4
√
x
4
+
1
−
5
√
x
4
+
1
=
l
i
m
x
→
∞
√
(
1
+
1
x
2
)
−
3
√
(
1
x
+
1
x
3
)
4
√
(
1
+
1
x
4
)
−
5
√
(
1
x
+
1
x
5
)
=
1
−
0
1
−
0
=
1.
Suggest Corrections
0
Similar questions
Q.
l
i
m
x
→
∞
√
x
2
+
1
−
3
√
x
2
+
1
4
√
x
4
+
1
−
5
√
x
4
−
1
i
s
e
q
u
a
l
t
o
Q.
l
i
m
x
→
∞
√
x
2
+
1
+
3
√
x
2
+
1
4
√
x
4
+
1
+
5
√
x
4
−
1
is equal to -
Q.
Solve:
lim
x
→
∞
√
x
2
+
1
−
3
√
x
3
+
1
4
√
x
4
+
1
+
5
√
x
4
+
1
Q.
lim
x
→
∞
√
x
2
+
1
−
3
√
x
2
+
1
4
√
x
4
+
1
−
5
√
x
4
−
1
is equal to
Q.
l
i
m
x
→
∞
√
x
2
+
1
−
3
√
x
2
+
1
4
√
x
4
+
1
−
5
√
x
4
−
1
i
s
e
q
u
a
l
t
o
View More
Related Videos
Factorisation and Rationalisation
MATHEMATICS
Watch in App
Explore more
Rationalization Method to Remove Indeterminate Form
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app