Byju's Answer
Standard XII
Mathematics
Equality of 2 Complex Numbers
Solve for x...
Question
Solve for
x
,
y
and
z
, if
x
y
+
x
+
x
+
y
=
23
,
y
z
+
y
+
z
=
31
,
z
x
+
z
+
x
=
4
Open in App
Solution
Given,
x
y
+
x
+
y
=
23
⇒
(
1
+
x
)
(
1
+
y
)
=
24
→
(
1
)
y
z
+
y
+
z
=
31
⇒
(
1
+
y
)
(
1
+
z
)
=
32
→
(
2
)
z
x
+
x
+
z
=
47
⇒
(
1
+
z
)
(
1
+
x
)
=
48
→
(
3
)
(
1
)
×
(
2
)
×
(
3
)
⇒
[
(
1
+
x
)
(
1
+
y
)
(
1
+
z
)
]
2
=
24
×
32
×
48
(
1
+
x
)
(
1
+
y
)
(
1
+
z
)
=
±
192
→
(
4
)
(
4
)
(
1
)
⇒
1
+
z
=
±
192
24
1
+
z
=
±
8
∴
z
=
−
9
(
o
r
)
7
(
4
)
2
)
⇒
1
+
x
=
±
192
32
1
+
x
=
±
6
x
=
−
7
(
o
r
)
5
(
4
)
(
3
)
⇒
1
+
y
=
±
192
48
1
+
y
=
±
4
y
=
−
5
(
o
r
)
3
∴
(
x
=
−
7
,
y
=
−
5
,
z
=
−
9
)
(
o
r
)
(
x
=
5
,
y
=
3
,
z
=
7
)
Suggest Corrections
0
Similar questions
Q.
Solve:
∣
∣ ∣ ∣
∣
x
x
2
y
z
y
y
2
z
x
z
z
2
x
y
∣
∣ ∣ ∣
∣
=
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
(
x
y
+
y
z
+
z
x
)
.
Q.
Prove that
∣
∣ ∣ ∣
∣
x
y
z
x
2
y
2
z
2
y
z
z
x
x
y
∣
∣ ∣ ∣
∣
=
(
y
−
z
)
(
z
−
x
)
(
x
−
y
)
(
y
z
+
z
x
+
x
y
)
.
Q.
Show that
∣
∣ ∣ ∣
∣
x
x
2
y
z
y
y
2
z
x
z
z
2
x
y
∣
∣ ∣ ∣
∣
=
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
(
x
y
+
y
z
+
z
x
)
Q.
If
x
+
y
+
z
=
x
y
z
, prove that
x
+
y
1
−
x
y
+
y
+
z
1
−
y
z
+
z
+
x
1
−
z
x
=
x
+
y
1
−
x
y
⋅
y
+
z
1
−
y
z
⋅
z
+
x
1
−
z
x
.
Q.
Solve:
det
∣
∣ ∣ ∣
∣
x
x
2
y
z
y
y
2
z
x
z
z
2
x
y
∣
∣ ∣ ∣
∣
View More
Related Videos
Solving Complex Equations
MATHEMATICS
Watch in App
Explore more
Equality of 2 Complex Numbers
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app