wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve : (sinx)11/3(cosx)1/3dx

Open in App
Solution

(sinx)11/3(cosx)1/3dx
Substitute,
z=tanx
dz=sec2xdx
=1(sinx)11/3(cosx)11/3(cosx)11/3(cosx)1/3dx
=1(tanx)11/3cos4xdx
=sec2xdx(tanx)11/3cos2x
=(sec2x)(sec2x)dx(tanx)11/3
=(1+z2)z11/3dz
=(z11/3+z5/3)dz
=z11/3+111/3+1+z5/3+15/3+1+C
=z8/38/3+z2/32/3+C
=38(tanx)8/332(tanx)2/3+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon