Solve (1−1n+1)+(1−2n+1)+(1−3n+1)+..............+(1−nn+1)
(1−(1n+1))+(1−(2n+1))+......+1−(nn+1)=n−[(1+2+3+...+nn+1)]=n−((n(n+1)2)n+1)n−(n2)=(n2)
The sum of (n+1) terms of 11+11+2+11+2+3+.......... is
The sum of (n+1) terms of 11+11+2+11+2+3+...... is