We have,
limx→π4(√2cosx−1cotx−1)
This is 00form.
So, apply L-Hospital rule
limx→π4(−√2sinx−0−cosec2x−0)
limx→π4(√2sinxcosec2x)
limx→π4(√2sin3x)
=√2×(sinπ4)3
=√2×(1√2)3
=12
Hence, the value is 12.
limx→π4√2cosx−1cotx−1 is equal to