Consider the given differential equation.
(x+y−1x+y−2)dydx=x+y+1x+y+2
Let,
u=x+y
dudx=1+dydx
Therefore,
(x+y−1x+y−2)dydx=x+y+1x+y+2
u−1u−2(dudx−1)=u+1u+2
(u−1u−2)dudx=u+1u+2+u−1u−2
(u−1u−2)dudx=u2+u−2u−2+u2−u+2u−2(u−2)(u+2)
(u−1u−2)dudx=2(u2−2)(u−2)(u+2)
u2−4u2−2du=2dx
Integrate both the sides.
∫u2−4u2−2du=∫2dx
u+ln⎛⎝∣∣u+√2∣∣∣∣u−√2∣∣⎞⎠√2=2x+c
x+y+1√2ln⎛⎝∣∣x+y+√2∣∣∣∣x+y−√2∣∣⎞⎠=2x+c
x+y+1√2ln⎛⎝∣∣x+y+√2∣∣∣∣x+y−√2∣∣⎞⎠+C=0
Hence, this is the required solution of the integral.