wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations:
2tan1(cosx)=tan1(2cscx)

Open in App
Solution

We know that
2tan1x=tan12x1x2
Replacing x with cosx
2tan1cosx=tan12cosx1cos2x
Using cos2x+sin2=1
i.e. sin2x=1cos2x
2tan1cosx=tan12cosxsin2x....(1)
Given
2tan1(cosx)=tan1(2cscx)
Putting values
tan12cosxsin2x=tan1(2cscx)
2cosxsin2x=2cscx
cosxsin2x=cscx
cosxsin2x=1sinx
cosx=sin2xsinx
cosx=sinx
sinxcosx=1
tanx=1
tanx=tanπ4
x=π4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon