Question

# Solve the following equations :$$\dfrac { x }{ a+\lambda } +\dfrac { y }{ b+\lambda } +\dfrac { z }{ c+\lambda } =1,\dfrac { x }{ a+\mu } +\dfrac { y }{ b+\mu } +\dfrac { z }{ c+\mu } =1,\\ \dfrac { x }{ a+\nu } +\dfrac { y }{ b+\nu } +\dfrac { z }{ c+\nu } =1.$$

Solution

## Consider the following equation in $$t$$,$$\dfrac { x }{ a+t } +\dfrac { y }{ b+t } +\dfrac { z }{ c+t } =1-\dfrac { \left( t-\lambda \right) \left( t-\mu \right) \left( t-\gamma \right) }{ \left( t+a \right) \left( t+b \right) \left( tc \right) }$$$$x,y,z$$ being for the present regarded as know quantities.This equation when cleared of fractions is of second degree in $$t$$, and is satisfied for three values   $$t=\lambda, t=\mu$$ and $$t=v$$ by virtue of the given equations; hence it must be an identity.To find the value of $$x,$$ we multiply $$(1)$$ by $$a+t$$, and then put $$t=-a$$. Thus$$x=\dfrac { \left(a+\lambda \right) \left( a+\mu \right) \left( a+v \right) }{ \left( a-b \right) \left( a-c \right) }$$ or $$x=\dfrac { \left( -a-\lambda \right) \left( -a-\mu \right) \left( -a-v \right) }{ \left( -a+b \right) \left( -a+c \right) }$$. By reason of symmetry, we have$$y=\dfrac { \left(b+\lambda \right) \left( b+\mu \right) \left( b+v \right) }{ \left( b-c \right) \left( b-a \right) }$$and $$z=\dfrac { \left(c+\lambda \right) \left( c+\mu \right) \left( c+v \right) }{ \left( c-a \right) \left(c-b\right) }$$We know that if $$\alpha ,\beta$$ are the roots of an eqution, then this equation is$${ x }^{ 2 }-(\alpha +\beta )x+\alpha \beta =0$$ or $${ x }^{ 2 }-{ S }_{ 1 }x+{ S }_{ 2 }=0$$ where $${S}_{1}$$ is sum of roots taken one at a time and $${S}_{2}$$ is sum of products of roots taken two at a time.Similarly if there is an equation whose roots are $$\alpha \beta \gamma$$ then $${ S }_{ 1 }=\alpha +\beta +\gamma ,{ S }_{ 2 }=\alpha \beta +\beta \gamma +\gamma \alpha ,{ S }_{ 3 }=\alpha \beta \gamma$$ and the corresponding equation will be $${ t }^{ 3 }-{ S }_{ 1 }{ t }^{ 2 }+{ S }_{ 2 }t-{ S }_{ 3 }=0.$$Again we know that if $$a$$ is a root of the equation $$f(x)=0$$ then $$a$$ will satisfy the equation, $$i.e.f(a)=0.$$Alternative Solution of Q.22 (i).Consider the equation $$z+ty+{t}^{2}x+{t}^{3}=0$$It is clear that the above equation is satisfied by $$t=a,b,c$$ by virtue of the above three given equations.which is true by $$1st$$ equation and so on. Thus $$a,b,c$$ are the roots of the equation.$$\because z+ay+{a}^{2}x+{a}^{3}=0.$$which is ture by $$1st$$ equation and so on. Thus $$a,b,c$$ are the roots of the equation.$${t}^{3}+{t}^{2}x+ty+z=0$$$$\therefore { S }_{ 1 }=a+b+c=-x,$$$${ S }_{ 2 }=ab+bc+ca=y,{S}^{3}=abc=-z$$$$\therefore x=-(a+b+c),y=\sum { ab },z=-abc.$$Maths

Suggest Corrections

0

Similar questions
View More

People also searched for
View More