CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

Solve the following inequation, write the solution set and represent it on the number line.
$$-3 (x - 7)\geq 15 - 7x > \dfrac {x + 1}{3}, x\in R$$


Solution

Given: $$-3(x - 7)\geq 15 - 7x > \dfrac {x + 1}{3}$$
$$-3x + 21\geq 15 - 7x > \dfrac {x + 1}{3}$$
$$\Rightarrow -3x + 21 \geq 15 - 7x$$ and $$155 - 7x > \dfrac {x + 1}{3}$$
$$\Rightarrow 4x \geq -6$$ and $$45 - 21x > x + 1$$

$$\Rightarrow x \geq - \dfrac {3}{2}$$ and $$44 > 22x$$

$$\Rightarrow x \geq \dfrac {-3}{2}$$ and $$2 > x$$
$$\therefore$$ Solution set $$= \left \{x : x \in R, \dfrac {-3}{2} \leq x < 2\right \}$$

615497_577923_ans_c16717d33ff543cb919862066970220c.png

Mathematics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image