CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

State true or false:
In $$ \bigtriangleup ABC $$, $$ AD $$ is the median and $$ DE $$ is parallel to $$ BA $$, where $$ E $$ is a point in $$ AC $$ and hence $$ BE $$ is parallel to $$BC$$.


A
True
loader
B
False
loader

Solution

The correct option is B False
Given: $$AD$$ is the median of $$\triangle ABC$$.
Hence, $$BD = DC$$.
Also, $$DE \parallel AB$$ and $$DE$$ is drawn from the mid point of $$BC$$, i.e. $$D$$.
Thus, by converse of mid-point theorem, $$DE$$ bisects the third side, which is $$AC$$.
Then, $$E$$ is the mid point of $$AC$$.
Hence, $$BE$$ is the median of $$\triangle ABC$$.

That is, the given statement is false and option $$B$$ is correct.

198213_179113_ans.png

Mathematics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image