The correct option is B Statement−1 is true, Statement−2 is true, Statement−2 is not a correct explanation of Statement−1.
If base>1, then log function is strictly increasing.
So, when x>1, we have
logx10>logxπ>logxe>logx2
⇒1logx10<1logxπ<1logxe<1logx2
⇒log10x<logπx<logex<log2x
For 0<a<1, logax is strictly decreasing function of x.
∴x<y⇒logax>logay