Suppose f(x) and g(x) are differentiable functions s.t. xg(f(x))f′(g(x))g′(x)=f(g(x))g′(f(x))f′(x)∀xϵR and ∫a0f(g(x))dx =1−e−2a2∀aϵR . Given that g(f(0)) = 1, if value of g (f(4)) = e−4k , Where kϵN then k is equal to
Open in App
Solution
xg(f(x))f′(g(x))g′(x)=f(g(x))g′(f(x))f′(x) x \dfrac {f'(g(x) g'(x) }{f(g(x) }=\dfrac{ g'(f(x) f(x)}{g(f(x)) } integrating the equation , as we know integration of $ \dfrac {f'(g(x) g'(x) }{f(g(x) } =lnf(g(x)) andintegrationof\dfrac {g'(f(x) g'(x) }{g(f(x) }= ln g(f(x)$ after integration we get xln f(g(x)) - integration of (ln f(g(x)) dx =lng(f(x))........1 equation integration from zero to a of f(g(x))dx = \dfrac {(1-e^-2a }{ 2} now differntiating this equation f(g(x))=e^-2a...........equation 2 now putting equation 2 in equation 1 we get xln(e^-2x)- integration ln(e^-2x) dx = ln(g(f( x)) -2x \times x -x^2 = ln g(f(X)) lng(f(X))= -x^2 g(f(x))= e^(-x^2) g(f(4)) = e^(-4 *4) so k= 4