wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Suppose f(x) and g(x) are differentiable functions s.t. xg(f(x))f(g(x))g(x)=f(g(x))g(f(x))f(x)xϵR and a0f(g(x))dx =1e2a2aϵR . Given that g(f(0)) = 1, if value of g (f(4)) = e4k , Where kϵN then k is equal to

Open in App
Solution

xg(f(x))f(g(x))g(x)=f(g(x))g(f(x))f(x)
x \dfrac {f'(g(x) g'(x) }{f(g(x) }=\dfrac{ g'(f(x) f(x)}{g(f(x)) }
integrating the equation , as we know integration of $
\dfrac {f'(g(x) g'(x) }{f(g(x) } =lnf(g(x)) andintegrationof \dfrac {g'(f(x) g'(x) }{g(f(x) }= ln g(f(x)$
after integration we get
xln f(g(x)) - integration of (
ln f(g(x)) dx =lng(f(x))........1 equation
integration from zero to a of
f(g(x))dx = \dfrac {(1-e^-2a }{ 2}
now differntiating this equation
f(g(x))=e^-2a...........equation 2
now putting equation 2 in equation 1 we get
xln(e^-2x)- integration ln(e^-2x) dx = ln(g(f( x))
-2x \times x -x^2 = ln g(f(X))
lng(f(X))= -x^2
g(f(x))= e^(-x^2)
g(f(4)) = e^(-4 *4)
so k= 4

796124_769239_ans_717e316c98a74495a67ac4769724f8d3.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon