The correct option is B π4−x2, for x∈(−π2,π2)
Let tan−1[cosx1+sinx]=tan−1A....(i)
⇒A=cosx1+sinx
=⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣1−tan2x21+tan2x21+2tanx21+tan2x2⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
=1−tan2x2(1+tan2x2)2
=1−tanx21+tanx2
=tan(π4−x2)
From eq (i)
tan−1(cosx1+sinx)=tan−1[tan(π4−x2)]
∴tan−1(tanθ)=θ if −π2<θ<π2
∴−π2<π4−x2<π2
⇒−3π4<−x2<π4
⇒−π2<x<3π2