Iftanθ2=√a−ba+btanϕ2 prove that cosθ=acosϕ+ba+bcosϕ
We know that,cosθ=1−tan2θ21+tan2θ2⇒cosθ=1−a−ba+btan2ϕ21+a−ba+btan2ϕ2[∵tanθ2=√a−ba+btanϕ2]cosθ=a+b−atan2ϕ2+btan2ϕ2a+b+atan2ϕ2−btan2ϕ2⇒cosθ=a(1−tan2ϕ2)+(1+tan2ϕ2)a(1+tan2ϕ2)+b(1−tan2ϕ2)On dividing RHS by 1 + tan2ϕ2we get,cosθ=a⎛⎜⎝1−tan2ϕ21+tan2ϕ2⎞⎟⎠+ba+b⎛⎜⎝1−tan2ϕ21+tan2ϕ2⎞⎟⎠=acosϕ+ba+bcosθ