Consider the points
A(−4,−2),B(−3,−5),C(3,−2) and D(2,3).A(△)=12×|x1(y2−y3)+x2(y3−y1)+x3(y1−y2)|
∴ Area of △ABC
=12|(−4)(−5+2)−3(−2+2)+3(−2+5)| =12|20−8−6+15|=212A(△ABC)=10.5 sq. units
Similarly, area of △ACD
=12|(−4)(−2−3)+3(3+2)+2(−2+2)| =12|20+15|=352A(△ACD)=17.5 sq. units
Area of quadrilateral ABCD=A(△ABC)+A(△ACD) =(10.5+17.5)=28 sq. units