CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

The area of the region bounded by the parabola $$(\mathrm{y}-2)^{2}=\mathrm{x}-1$$, the tangent to the parabola at the point $$(2,\ 3)$$ and the $$\mathrm{x}$$-axis is 


A
3
loader
B
6
loader
C
9
loader
D
12
loader

Solution

The correct option is C $$9$$
Equation of tangent at $$(2,3)$$ $$:$$   $$2y=x+4$$

$$\displaystyle \int_{0}^{3}[(y-2)^{2}+1]-[2y-4] \text{ }dy$$

$$=\displaystyle \int_{0}^{3}[(y-2)^{2}-2y+5]\text{ }dy$$

$$=\left[\dfrac{(y-2)^{3}}{3}-y^{2}+5y\right]_{0}^{3}$$

$$=9$$

Mathematics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image