  Question

The equation $$9x^3 + 9x^2 y - 45 x^2 = 4y^3 + 4xy^2 - 20y^2$$ represents $$3$$ straight lines, two of which passes through origin. Then find the area of the triangle formed by these lines.

Solution

$$9x^3+9x^2y-45x^2=4y^3+4xy^2-20y^2$$$$9x^2(x+y-5)=4y^2(x+y-5)$$$$9x^2(x+y-5)-4y^2(x+y-5)=0$$$$(9x^2-4x^2)(x+y-5)=0$$$$(3x+2y)(3x-2x)(x+y-5)=0$$so the three lines are$$x=\dfrac{2}{3}y$$, $$x=\dfrac{-2}{3}y$$ and $$x+y-5$$from equation of lines , we get the vertices of triangle formed by the lines$$A(0,0),B(-10,15)$$ and $$C(2,3)$$Area of the triangle $$=\dfrac{1}{2}(x_a-x_c)(y_b-ya)-(x_a-x_b)(y_c-y_a)$$                                   $$=\dfrac{1}{2}(x_ay_b+x_by_c+x_cy_a-x_ay_c-x_cy_b-x_by_a)$$                                    $$=\dfrac{1}{2}(0\times15+-10\times3+2\times0-0\times3-2\times15-(-10\times0)$$                                      $$=\dfrac{1}{2}\times-60$$since, area is non- negativengleSo, the area of the triangle$$=30 unit^2$$Maths

Suggest Corrections  0  Similar questions
View More  People also searched for
View More 