Byju's Answer
Standard XII
Mathematics
Cramer's Rule
The equation ...
Question
The equation of the plane through the line x + y + z + 3 = 0 = 2x − y + 3z + 1 and parallel to the line
x
1
=
y
2
=
z
3
is
(a) x − 5y + 3z = 7
(b) x − 5y + 3z = −7
(c) x + 5y + 3z = 7
(d) x + 5y + 3z = −7
Open in App
Solution
(a) x − 5y + 3z = 7
The equation of the plane passing through the line of intersection of the given planes is
x
+
y
+
z
+
3
+
λ
2
x
-
y
+
3
z
+
1
=
0
1
+
2
λ
x
+
1
-
λ
y
+
1
+
3
λ
z
+
3
+
λ
=
0
.
.
.
1
This plane is parallel to the line
x
1
=
y
2
=
z
3
.
It means that this line is perpendicular to the normal of the plane (1).
⇒
1
1
+
2
λ
+
2
1
-
λ
+
3
1
+
3
λ
=
0
(Because
a
1
a
2
+
b
1
b
2
+
c
1
c
2
=
0
)
⇒
1
+
2
λ
+
2
-
2
λ
+
3
+
9
λ
=
0
⇒
9
λ
+
6
=
0
⇒
λ
=
-
2
3
Substituting this in (1), we get
1
+
2
-
2
3
x
+
1
-
-
2
3
y
+
1
+
3
-
2
3
z
+
3
+
-
2
3
=
0
⇒
-
x
+
5
y
-
3
z
+
7
=
0
⇒
x
-
5
y
+
3
z
=
7
Suggest Corrections
0
Similar questions
Q.
State True or False.
125
(
x
−
y
)
3
+
(
5
y
−
3
z
)
3
+
(
3
z
−
5
x
)
3
=
15
(
x
−
y
)
(
5
y
−
3
z
)
(
3
z
−
5
x
)
Q.
Find the value of
x
,
y
and
z
from the given linear equations:
x
+
y
+
z
=
0
,
2
x
+
5
y
+
7
z
=
0
,
2
x
−
5
y
+
3
z
=
0
Q.
solve
(
x
+
5
y
−
3
z
)
3
+
(
x
−
5
y
+
3
z
)
3
+
6
x
(
x
+
5
y
−
3
z
)
(
x
−
5
y
+
3
z
)
=
8
x
3
Q.
Equation of the plane perpendicular to the line
x
−
1
3
=
y
−
5
2
=
z
+
3
−
4
and passing through the point
(
1
,
−
2
,
3
)
is
Q.
For the equations
x
+
2
y
+
3
z
=
1
,
2
x
+
y
+
3
z
=
2
and
5
x
+
5
y
+
9
z
=
4
View More
Related Videos
System of Linear Equations
MATHEMATICS
Watch in App
Explore more
Cramer's Rule
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app