The correct option is
C The midpoint of AB
From fig, Let
A(x1,y1,z1),
M(x,y,z) and
B(x2,y2,z2)
We have the equation for the line,
x−x1x2−x1=y−y1y2−y1=z−z1z2−z1
⟹x+920=y−4−4=z−56
⟹x+9−10=y−42=z−53
Say,
⟹x+9−10=y−42=z−53=r
The direction ratio of line AB is, (a1,b1,c1)=(−10,2,3)
x=−10r−9
y=2r+4
z=3r+5
The direction ratio of line OM is,
(a2,b2,c2)=(x−0,y−0,z−9)
(a2,b2,c2)=(−10r−9,2r+4,3r+5)
If OM and AB are perpendicular the,
a1a2+b1b2+c1c2=0
−10(−10r−9)+2(2r+4)+3(3r+5)=0
⟹r=−1
∴M(x,y,z)=(−10r−9,2r+4,3r+5)=(10(−1)−9,2(−1)+4,3(−1)+5)=(1,2,2)
Now, from distance formula, to find the mid point of AB,
(x2+x12,y2+y12,z2−z12)=(11−92,4+02,−1+52)=(1,2,2)
This is equal to M. Hence the foot of the perpendicular from the origin to the join of A, B is the midpoint of AB
Option C