The correct option is D 2
∵f(x)=|x2−3x+2|+cos|x|=|(x−1)||x−2|+cos|x|f(x)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩x2−3x+2+cosx,x<0x2−3x+2+cosx,0≤x<1−x2+3x−2+cosx,1≤x<2x2−3x+2+cosx,x>2∴f′(x)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩2x−3−sinx,x<02x−3−sinx,0≤x<1−2x+3−sinx,1≤x<22x−3−sinx,x>2
It is clear f(x) is not differentiable at x = 1and x = 2.
∴f′(1−)=−1−sin1and f′(1+)=1−sin1
∴f′(2−)=−1−sin2and f′(2+)=1−sin2