Solving Linear Differential Equations of First Order
The general s...
Question
The general solution of the equation, 1−sinx+...+(−1)nsinnx+...1+sinx+...+sinnx+...=1−cos2x1+cos2x is:
A
(−1)nπ3+nπ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(−1)nπ6+nπ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(−1)n+1π6+nπ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(−1)n−1π3+nπ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B(−1)nπ6+nπ 1−sinx+...+(−1)nsinnx+...1+sinx+...+sinnx+...=1−cos2x1+cos2x 11+sinx11−sinx=2sin2x2cos2x 1−sinx1+sinx=sin2xcos2x ⇒2sin2x+sinx−1=0 ⇒(2sinx−1)(sinx+1)=0 ⇒sinx=−1orsinx=12 ⇒sinx=sin3π2orsinx=sinπ6 The general solutions are x=mπ+(−1)m3π2,m∈z,x=nπ+(−1)nπ6