The correct option is
D None of these
Let
A=⎡⎢⎣20−1510013⎤⎥⎦We known than A=IA. Therefore,
⎡⎢⎣20−1510013⎤⎥⎦=⎡⎢⎣100010001⎤⎥⎦A
Applying R1→12R1, we have
⎡⎢
⎢
⎢⎣10−12510013⎤⎥
⎥
⎥⎦=⎡⎢
⎢
⎢⎣1200010001⎤⎥
⎥
⎥⎦A
Applying R2→R2−5R1, we have
⎡⎢
⎢
⎢
⎢
⎢⎣10−120152013⎤⎥
⎥
⎥
⎥
⎥⎦=⎡⎢
⎢
⎢
⎢
⎢⎣1200−5210001⎤⎥
⎥
⎥
⎥
⎥⎦
Applying R3→R3−R2, we have
⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣10−1201520012⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦=⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣1200−521052−11⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦ A
Applying R3→2R3, we have
⎡⎢
⎢
⎢
⎢
⎢⎣10−120152001⎤⎥
⎥
⎥
⎥
⎥⎦=⎡⎢
⎢
⎢
⎢
⎢⎣1200−52105−22⎤⎥
⎥
⎥
⎥
⎥⎦ A
Applying R1→R1+12R3 and R2→R2−52R3, we have
⎡⎢⎣100010001⎤⎥⎦=⎡⎢⎣3−11−156−55−22⎤⎥⎦A
∴A−1=⎡⎢⎣3−11−156−55−22⎤⎥⎦