The correct option is A intersect
Given: →r=^i+^j−^k+s(3^i−^j) and →r=4^i−^k+t(2^i+3^k)
We have two lines →r=→a+s→band→r=→c+t→d
→a=^i+^j−^k
→c=4^i−^k
→b=3^i−^j
→d=2^i+3^k
To check the type of lines.
Lets find the value of
[→a−→c →b →d]
If [→a−→c →b →d]=0, then the lines are coplanar.So intersecting lines, otherwise skew lines.
Now [→a−→c →b →d]=[(^i+^j−^k)−(4^i−^k) 3^i−^j 2^i+3^k]
⇒[−3^i+^j 3^i−^j 2^i+3^k]
⇒∣∣
∣∣−3103−10203∣∣
∣∣=3(3−3)=0
Hence,
[→a−→c →b →d]=0
∴ Given lines are intersecting lines.