Byju's Answer
Standard XII
Mathematics
First Fundamental Theorem of Calculus
The maximum v...
Question
The maximum value of
cos
2
(
45
∘
+
x
)
+
(
sin
x
−
cos
x
)
2
is
Open in App
Solution
Given expression
cos
2
(
45
∘
+
x
)
+
(
sin
x
−
cos
x
)
2
=
1
2
(
1
+
cos
(
90
+
2
x
)
)
+
(
sin
x
−
cos
x
)
2
[
∵
c
o
s
2
x
=
2
c
o
s
2
x
−
1
]
=
1
2
(
1
−
sin
2
x
)
+
(
sin
2
x
−
2
s
i
n
x
cos
x
+
c
o
s
2
x
)
=
1
2
(
1
−
sin
2
x
)
+
1
−
2
s
i
n
x
cos
x
=
1
2
(
1
−
sin
2
x
)
+
1
−
s
i
n
2
x
=
3
2
(
1
−
sin
2
x
)
Now, since
−
1
≤
sin
2
x
≤
1
−
1
≤
−
sin
2
x
≤
1
⇒
0
≤
1
−
sin
2
x
≤
2
⇒
0
≤
3
2
(
1
−
sin
2
x
)
≤
3
Hence,maximum value is
3
Suggest Corrections
0
Similar questions
Q.
If
y
=
cos
2
(
45
∘
+
x
)
+
(
sin
x
−
cos
x
)
2
, where
x
∈
(
0
,
π
2
]
, then the possible value(s) of
y
is/are
Q.
If
y
=
cos
2
(
45
∘
+
x
)
+
(
sin
x
−
cos
x
)
2
, where
x
∈
(
0
,
π
2
]
, then the possible value(s) of
y
is/are
Q.
If
cot
x
=
2
, find the value of
(
2
+
2
sin
x
)
(
1
−
sin
x
)
(
1
+
cos
x
)
(
2
−
2
cos
x
)
Q.
The value of
k
for which
(
sin
x
+
cos
x
)
2
+
k
sin
x
.
cos
x
−
1
=
0
for
x
∈
R
, is
Q.
(
s
i
n
x
+
c
o
s
x
)
2
+
cos
2
(
π
4
−
x
)
∈
View More
Related Videos
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Explore more
First Fundamental Theorem of Calculus
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app