wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The minimum value of e(2x2−2x+1)sin2x

A
e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1/e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 1
Let f(x)=e(2x22x+1)sin2x

Since, ex is an increasing function.

Let t=(2x22x+1)sin2x
dtdx=(2x22x+1)(2sinxcosx)+sin2x(4x2)
dtdx=0=4x2sinxcosx4xsinxcosx
+2sinxcosx+4xsin2x2sin2x
sinx[4x2cosx4xcosx+2cosx+
4xsinx2sinx]=0
sinn[2cosn(2x22x+1)+2sinx(2x1)=0

Now,

2cosx(2x22x+1)+2sinx(2x1)0
sinx=0
x=nπ

50; minimum value of t=0

Hence,
minimum ralue of f(x)=e0=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon