The minimum value of f(z)=|z|+|z−1|+|z+2| is
|z−1|+|z+2|=|−z+1|+|z+2|⩾|1−/z+/z+2|
⩾3And clearly the value 3 occurs
When z=0, -2, 1Now, |z|is minimum at z=0
Hence minimum value = 3
Similarly
Taking |z|+|z−1|
⇒|z|+|z−1|=|z|+|1−z|⩾|/z+1−/z|
=1And value 1
occurs atz=0,z=1orz=z=12
But |z+2| is minimum at z=0
Hence minimum value =i+|z+2|
=3atz=0Similarly
Taking |z|+|z+2|But |z−1| is minimum at z=0
Hence minimum
value =2+|z−1|
=3