wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution of the integral 2π0sin4xcos6xdx, is

A
3π128
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
π128
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
5π128
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
7π128
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 3π128
Let I=2π0sin4xcos6xdx
I=2π0sin4xcos6xdx (2a0f(x)dx=22a0f(x)dxif f(x)iseven)
I=4π/20sin4xcos6xdx (2a0f(x)dx=22a0f(x)dxif f(x)iseven)
I=4π/20(1cos2x2)2(1+cos2x2)3dx
I=18π/20(1cos2x)2(1+cos2x)2(1+cos2x)dx
I=18π/20sin42x(1+cos2x)dx
I=18[π/20sin42xdx+π/20sin42xcos2xdx]
Put sin2x=t in second integral
2cos2xdx=dt
But , the limits of integral changes from 0 to 0 .
Hence, the value of second integral is 0
I=18π/20(1cos4x2)2dx
I=132π/20(1+cos24x2cos4x)dx
I=132π/20(1+1+cos8x22cos4x)dx
I=132π/20(32+cos8x22cos4x)dx
I=132[3x2+sin8x162sin4x4]π/20
I=3π128

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon