The solution of the integral ∫2π0sin4x⋅cos6xdx, is
A
3π128
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
π128
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
5π128
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
7π128
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A3π128 Let I=∫2π0sin4x⋅cos6xdx ⇒I=2∫π0sin4x⋅cos6xdx (∵∫2a0f(x)dx=2∫2a0f(x)dxif f(x)iseven) ⇒I=4∫π/20sin4x⋅cos6xdx (∵∫2a0f(x)dx=2∫2a0f(x)dxif f(x)iseven) ⇒I=4∫π/20(1−cos2x2)2(1+cos2x2)3dx ⇒I=18∫π/20(1−cos2x)2(1+cos2x)2(1+cos2x)dx ⇒I=18∫π/20sin42x(1+cos2x)dx ⇒I=18[∫π/20sin42xdx+∫π/20sin42xcos2xdx] Put sin2x=t in second integral ⇒2cos2xdx=dt But , the limits of integral changes from 0 to 0 . Hence, the value of second integral is 0 ⇒I=18∫π/20(1−cos4x2)2dx ⇒I=132∫π/20(1+cos24x−2cos4x)dx ⇒I=132∫π/20(1+1+cos8x2−2cos4x)dx ⇒I=132∫π/20(32+cos8x2−2cos4x)dx ⇒I=132[3x2+sin8x16−2sin4x4]π/20 ⇒I=3π128