The correct option is C [−1,1√2)
Given:
(cos−1x)4−(sin−1x)4>0
⇒((cos−1x)2−(sin−1x)2)((cos−1x)2+(sin−1x)2)>0
(∵(cos−1x)2+(sin−1x)2)>0)
⇒(cos−1x)2−(sin−1x)2>0
⇒(cos−1x−sin−1x)(cos−1x+sin−1x)>0
⇒(cos−1x−sin−1x)⋅π2>0
⇒(cos−1x−sin−1x)>0
⇒π2−2sin−1x>0
⇒sin−1x<π4
⇒x<1√2
Since, cos−1x and sin−1x is defined if and only if −1≤x≤1
∴x∈[−1,1√2)