CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

The sum of infinity of the series $$\displaystyle 1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+$$..... is


A
1635
loader
B
118
loader
C
3516
loader
D
86
loader

Solution

The correct option is C $$\displaystyle\frac{35}{16}$$
Let $$\displaystyle S=1+\frac { 4 }{ 5 } +\frac { 7 }{ { 5 }^{ 2 } } +\frac { 10 }{ { 5 }^{ 3 } } +...$$   ...(1)
Multiply (1) by $$\displaystyle \frac { 1 }{ 5 } $$ , we get
$$\displaystyle \frac { 1 }{ 5 } S=\frac { 1 }{ 5 } +\frac { 4 }{ { 5 }^{ 2 } } +\frac { 7 }{ { 5 }^{ 3 } } +\frac { 10 }{ { 5 }^{ 4 } } +...$$   ...(2)
$$(1) -(2)$$, gives 
$$\displaystyle \left( 1-\frac { 1 }{ 5 }  \right) S=1+\frac { 3 }{ 5 } +\frac { 3 }{ { 5 }^{ 2 } } +\frac { 3 }{ { 5 }^{ 3 } } +...$$
$$\displaystyle \Rightarrow \frac { 4 }{ 5 } S=1+\frac { 3 }{ 5 } \left( 1+\frac { 1 }{ 5 } +\frac { 1 }{ { 5 }^{ 2 } } +... \right) $$
$$\displaystyle \Rightarrow \dfrac { 4 }{ 5 } S=1+\dfrac { 3 }{ 5 } \left( \dfrac { 1 }{ 1-\dfrac { 1 }{ 5 }  }  \right) \Rightarrow \dfrac { 4 }{ 5 } S=1+\dfrac { 3 }{ 5 } \left( \dfrac { 5 }{ 4 }  \right) $$
$$\displaystyle \Rightarrow \frac { 4 }{ 5 } S=1+\frac { 3 }{ 4 } \Rightarrow S=\frac { 35 }{ 16 } $$

Mathematics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image