The sum of n terms of the series 1+(1+a)+(1+a+a2)+(1+a+a2+a3)+....., is
A
n1−a−a(1−an)(1−a)2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
n1−a+a(1−an)(1−a)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
n1−a+a(1+an)(1−a)2+
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
n1−a−a(1+an)(1−a)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is An1−a−a(1−an)(1−a)2 Tn=1+a+a2+....+an−1=1−an1−a Sn=∑Tn=1(1−a)[∑1−∑an] =1(1−a)[n−(a−a2+a3+....an)] =1(1−a)[n−a(1−an)(1−a)]=n1−a−a(1−an)(1−a)2