Let α be a common root of the equations.
Then α will satisfy the equations.
Thus,
α2+a.α+b=0⋯(i)
α2+b.α+a=0⋯(ii)
Subtracting the two equations, we get:
α(a−b)+(b−a)=0
⇒α(a−b)−(a−b)=0
⇒α(a−b)=(a−b)
Since a≠b
∴α=1
Hence, placing the value of α in the equation (i), we get
12+a.1+b=0⇒a+b=−1
Hence, value of a+b=−1