The value of ∫cos5xcosxdx is
(where C is constant of integration)
A
sin4x2−sin2x2+x2+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sin4x2−sin2x+x+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
sin4x2−cos2x+x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cos4x2−cos2x+2x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bsin4x2−sin2x+x+C Let I=∫cos5xcosxdx=∫(cos5x+cos3x)−(cos3x+cosx)+cosxcosxdx=∫2(cos4x−cos2x)cosx+cosxcosxdx=∫(2(cos4x−cos2x)+1)dx=sin4x2−sin2x+x+C