The correct option is C 94π(ln4−1)
We have,
L=limx→1(ln(1+x)−ln2)(3⋅4x−1−3x)((7+x)1/3−(1+3x)1/2)sinπx
Let x=1+h
As x→1,h→0
L=limh→0(ln(2+h)−ln2)(3⋅4h−3−3h)((8+h)1/3−(4+3h)1/2)(−sinπh)
=limh→03(ln(1+h2)h)(4h−1h−1)((8+h)1/3−81/3h−3((4+3h)1/2−41/2)3h)(−πsinπhπh)
=3×12×(ln4−1)(13×14−3×12×12)(−π)
=32(ln4−1)2π3
=94π(ln4−1)