wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of limxπ2(1cos2x+2cos2x+...+ncos2xn)1cos2x is

A
1(n!)n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(n!)1/n
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
nnn!
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(n!1n)nn+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C (n!)1/n
Let f(x)=1cos2x+2cos2x+...+ncos2xn.

Then, limxπ2f(x)=10+20+...+n0n=1+1+...nn=nn=1.

limxπ2[f(x)]g(x)=elimxπ2[f(x)1]g(x)
using above identity we get,
limxπ2[1cos2x+2cos2x+...+ncos2xn]1cos2x=elimxπ2⎢ ⎢1cos2x+2cos2x+...+ncos2xn⎥ ⎥1cos2x

=elimxπ2⎢ ⎢ ⎢ ⎢ ⎢(1cos2x+2cos2x+...+ncos2x)ncos2x⎥ ⎥ ⎥ ⎥ ⎥1n=elimxπ21h⎢ ⎢1cos2x1cos2x+2cos2x1cos2x+...+ncos2x1cos2x⎥ ⎥

=e1n⎢ ⎢limcos2x0⎜ ⎜1cos2x1cos2x⎟ ⎟+limcos2x0⎜ ⎜2cos2x1cos2x⎟ ⎟+limcos2x0⎜ ⎜ncos2x1cos2x⎟ ⎟⎥ ⎥

=e1n(log1+log2+...+logn)=e1nlog(1.2.3...n)=elog(n)1/n=(n!)1/n

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon