CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

The value of f(0) so that the function f(x)=1cos(1cos x)x4 is continuous everywhere is 


  1. none of these

  2. 18

  3. 14

  4. 12


Solution

The correct option is B

18


limx0f(x)=f(0) for continuity.
limx0f(x)=limx01cos (1cos x)x4
cos x=1x22!+x44!+.......limx0f(x)=limx01[1(1cos x)22!+(1cos x)44!....]x4(Replacing x by (1cos x))limx0f(x)=limx0(1cos x)22! x4(1cos x)44! x4+....Also, limx0(1cos xx2)=12      (cos x=1x22!+x44!+.....)limx0f(x)=limx012.((1cos x)x2)2+124limx0(x22!x44!.........)4x4+H.O.T.Slimx0f(x)=12×limx0(1cos xx2)2+0+0+.....limx0f(x)=12×(12)2=12×14=18

flag
 Suggest corrections
thumbs-up
 
0 Upvotes


Similar questions
View More...


People also searched for
View More...



footer-image