Byju's Answer
Standard XII
Mathematics
Sum of Coefficients of All Terms
The value of ...
Question
The value of
p
, for which coefficient of
x
50
in the expression
(
1
+
x
)
1000
+
2
x
(
1
+
x
)
999
+
3
x
2
(
1
+
x
)
998
+
.
.
.
.
+
1001
x
1000
is equal to
1002
C
p
, is
Open in App
Solution
Let
S
=
∑
1000
r
=
0
(
1
+
r
)
x
r
(
1
+
x
)
1000
−
r
So,
S
−
x
(
1
+
x
)
S
=
(
∑
1000
r
=
0
x
r
(
1
+
x
)
1000
−
r
)
−
1001
x
1001
(
1
+
x
)
=
(
(
1
+
x
)
1000
(
1
−
(
x
1
+
x
)
1001
)
1
−
x
1
+
x
)
−
1001
x
1001
1
+
x
⇒
S
(
1
−
x
1
+
x
)
=
(
(
1
+
x
)
1001
−
x
1001
)
−
1001
x
1001
1
+
x
⇒
S
=
(
1
+
x
)
(
(
1
+
x
)
1001
−
x
1001
)
−
1001
x
1001
=
(
1
+
x
)
1002
−
1002
x
1001
−
x
1002
So,
S
=
(
∑
1002
r
=
0
1002
C
r
x
r
)
−
1002
x
1001
−
x
1002
So, coefficient of
x
50
in the expansion will be,
1002
C
50
So,
p
=
50
or
p
=
1002
−
50
=
952
(
∵
n
C
r
=
n
C
n
−
r
).
Suggest Corrections
0
Similar questions
Q.
Find the coefficient of
x
50
in the expression
(
1
+
x
)
1000
+
2
x
(
1
+
x
)
999
+
3
x
2
(
1
+
x
)
998
+
…
…
…
+
1001
x
1000
Q.
Find the coefficient of
x
50
in the expression:
(
1
+
x
)
1000
+
2
x
(
1
+
x
)
999
+
3
x
2
(
1
+
x
)
998
+
.
.
.
.
+
1001
x
1000
Q.
Find the coefficient of
x
50
in the expression
(
1
+
x
)
1000
+
2
x
(
1
+
x
)
999
+
3
x
2
(
1
+
x
)
998
+
1000
x
1000
Q.
The coefficient of
x
50
in the expansion of
(
1
+
x
)
1000
+
2
x
(
1
+
x
)
999
+
3
x
2
(
1
+
x
)
998
+
.
.
.
.
.
.
+
1001
x
1000
Q.
The coefficient of
x
50
in the expansion of
(
1
+
x
)
1000
+
2
x
(
1
+
x
)
999
+
3
x
2
(
1
+
x
)
998
+
.
.
.
.
.
.
+
1001
x
1000
View More
Related Videos
Sum of Coefficients of All Terms
MATHEMATICS
Watch in App
Explore more
Sum of Coefficients of All Terms
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app