wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of the expression
(1+cosπ10)(1+cos3π10)(1+cos7π10)(1+cos9π10) is

Open in App
Solution

(1+cosπ10)(1+cos3π10)(1+cos7π10)(1+cos9π10)

=(1+cosπ10)(1+cos3π10)(1cos3π10)(1cosπ10) [coskπ10=cos(10kπ10)]

=(1cos2π10)(1cos23π10)

=sin2π10sin23π10

=14(1cosπ5)(1cos3π5)

=14(1cosπ5)(1[12cosπ5]) [cosπ5+cos3π5=12]

=18(1cosπ5)(1+2cosπ5)

=18(1+cosπ52cos2π5)

=18(cosπ5cos2π5) [2cos2π51=cos2π5]

=18(cosπ5+cos3π5) [coskπ5=cos(5kπ5)]

=18(12) [cosπ5+cos3π5=12]

=116

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon